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Abstract 

Background 

In the last decade, both endocrine and ultrasound data have been tested to verify their 
usefulness for assessing ovarian reserve, but the ideal marker does not yet exist. The purpose 
of this study was to find, if any, a statistical advanced model able to identify a simple, easy to 
understand and intuitive modality for defining ovarian age by combining clinical, 
biochemical and 3D-ultrasonographic data 

Methods 

This is a population-based observational study. From January 2012 to March 2014, we 
enrolled 652 healthy fertile women, 29 patients with clinical suspect of premature ovarian 
insufficiency (POI) and 29 patients with Polycystic Ovary syndrome (PCOS) at the Unit of 
Obstetrics & Gynecology of Magna Graecia University of Catanzaro (Italy). In all women we 
measured Anti Müllerian Hormone (AMH), Follicle Stimulating Hormone (FSH), Estradiol 
(E2), 3D Antral Follicle Count (AFC), ovarian volume, Vascular Index (VI) and Flow Index 
(FI) between days 1 and 4 of menstrual cycle. We applied the Generalized Linear Models 
(GzLM) for producing an equation combining these data to provide a ready to use 
information about women ovarian reserve, here called OvAge. To introduce this new 
variable, expression of ovarian reserve, we assumed that in healthy fertile women ovarian age 
is identical to chronological age. 

Results 

GzLM applied on the healthy fertile controls dataset produced the following equation OvAge 
= 48.05-3.14*AHM + 0.07*FSH- 0.77*AFC −0.11*FI +0.25*VI +0.1*AMH*AFC 
+0.02*FSH*AFC. This model showed a high statistical significance for each marker included 
in the equation. We applied the final equation on POI and PCOS datasets to test its ability of 
discovering significant deviation from normality and we obtained a mean of predicted 
ovarian age significantly different from the mean of chronological age in both groups. 

Conclusions 

OvAge is one of the first reliable attempt to create a new method able to identify a simple, 
easy to understand and intuitive modality for defining ovarian reserve by combining clinical, 
biochemical and 3D-ultrasonographic data. Although design data prove a statistical high 
accuracy of the model, we are going to plan a clinical validation of model reliability in 
predicting reproductive prognosis and distance to menopause. 

Keywords 
Ovarian reserve, Follicle Stimulating Hormone, Anti Müllerian Hormone, 3D Antral Follicle 
Count, Distance to menopause, Reproduction, Family planning, Generalized linear model 



Background 
The normal process of reproductive ageing varies considerably among women. While some 
women undergo premature menopause, others have spontaneous pregnancy in their fourth 
decade of life [1]. This variability, currently not predictable, is summarized in the concept of 
ovarian reserve, a term coined more than 25 years ago by Daniel Navot [2] and present in 
titles of at least 1300 papers indexed on PubMed. 

Given this variability, the ability to predict the ovarian reserve both in terms of reproductive 
prognosis and distance to menopause would be extremely important for any modern 
physician and gynecologist, in guiding patients’ reproductive attempts and in reducing the 
rates of unnecessary surgeries for benign pathologies, for which menopause may represent 
the best therapy. 

Up to now, no test, neither single nor combined, possesses a satisfactory sensitivity and 
specificity for clinical application [3]. The explanation to this incompetence probably lies in 
the conundrum of any screening test for ovarian reserve insufficiency: its prevalence changes 
with age and the performance of any test changes with it [4]. This concept explains why no 
single threshold value is usable to define an impairment of ovarian reserve, and why every 
test should always be interpreted based on the chronological patient’s age. 

The ideal marker should be able to evaluate simultaneously the qualitative and quantitative 
aspects of ovarian reserve, to integrate all the relevant information and respond with an 
output of clear understanding, that we could name “ovarian age”. Every woman could easily 
compare this number with her chronological age and the general practitioner would 
understand its meaning without being an expert in reproductive medicine. 

With this purpose, we introduce the new concept of OvAge, a numeric variable, which 
accurately reflects the ovarian reserve of women. Since the ovarian age is inherently 
unknown, we assumed that OvAge coincides with the chronological age, in healthy fertile 
women. A large representative sample of the healthy fertile women population has been used 
to design a statistical model able to estimate OvAge by a mathematical formula which 
accounts for patient’s biochemical and ultrasonographic as predictor variables. Biochemical 
variables include Follicle Stimulating Hormone (FSH), Estradiol (E2), Anti Müllerian 
Hormone (AMH), 3D-ultrasonographic variables are Antral Follicle Count (AFC), ovarian 
volume, Flow index (FI), Vascularization Index (VI) and Vascularization Flow Index (VFI). 
We designed a Generalized Linear Model (GzLM) and we finally used the model to evaluate 
the clinical plausibility of OvAge estimations in women with pathologic derangements of 
ovarian age, like patients with premature ovarian insufficiency (POI) and polycystic ovary 
syndrome (PCOS). In particular, the increase or decrease of OvAge from chronological age 
were interpreted as a useful clinical index of physiopathological ovarian reserve. 

Materials and methods 
This is a population-based study including the data of South Italy women enrolled after a 
delivery following a spontaneous pregnancy, or during a routine visit for cervical screening 
or contraception counselling at the Unit of Obstetrics & Gynecology and analyzed in 
collaboration with the Unit of Clinical Pathology and the School of Informatics and 
Biomedical Engineering, at Magna Graecia University of Catanzaro, Italy. 



The study was approved by the local Ethics Committee and written, informed consensus was 
obtained from each woman to the anonymous use of clinical data for statistical evaluation and 
research purposes. 

From January 2012 to March 2014 we consecutively recruited women, aged 18 to 55, who 
consent to participate in this prospective study, with history of spontaneous conception(s), 
intact ovaries and regular menses with a mean interval of 21 to 35 days. 

Exclusion criteria for the selection of the training subjects for this model were: estrogen or 
progestin use or in breastfeeding the two months before enrollment, pregnancy, history of 
female infertility, endometriosis, presence of ovarian follicles measuring more than 10 mm at 
study entry ultrasonography and other cystic masses of the ovary, history of ovarian surgery, 
PCOS, gynecological malignancy, previous radiation or chemotherapy, autoimmune disease, 
known chronic, systemic, metabolic and endocrine disease including hyperandrogenism, 
hyperprolactinemia, diabetes mellitus and thyroid diseases, hypogonadotropic hypogonadism 
or with history of use of drugs that can cause menstrual irregularity. 

During the same enrollment period, women with clinical suspect of POI and women with 
PCOS were also enrolled, to test the ability of OvAge to detect abnormal deviation from 
chronological age. 

POI was defined as the presence of secondary amenorrhea before the age of 40 years 
associated to FSH value >30 U/L and clinical manifestations such as palpitations, flushes, 
fatigue, anxiety, depression [5]. PCOS was diagnosed according to the Rotterdam criteria [6], 
when at least 2 of the following 3 features existed: oligo/amenorrhea, clinical and/or 
biochemical hyperandrogenism, and polycystic ovaries morphology (PCOM). We chose to 
include only PCOS women with PCOM to test our algorithm in this particular population of 
patients because, notwithstanding the lack of absolute evidence regarding dissimilarities 
involved in regulation of ovarian ageing in these women, data currently available in literature 
suggest that the intrinsic ovarian abnormality associated with altered follicular dynamics in 
the PCOS might cause a reduced rate of atresia, a delayed age of menopause and end of 
fertility [7]. 

At screening visit, all women were checked for inclusion and exclusion criteria by anamnesis 
and clinical examination. Anamnesis was collected by a standardized questionnaire aimed to 
investigate also past problems in conceiving and menstrual disorders. 

Eligible women were asked to contact one of the investigators at the first day of menstrual 
cycle, at least three to four months after delivery. 

At study entry, basal AMH, FSH and E2, AFC, ovarian volume, VI, FI and VFI were 
measured in all women between day 1 and day 4 of menstrual cycle. 

Hormonal assays 

Blood samples obtained by venipuncture were centrifuged, within 30 minutes from the 
collection, for 10 min at 3500 rpm, 4°C. Aliquots of each serum were frozen at −80°C and 
stored for subsequent assays of AMH, FSH and E2. To measure serum AMH levels, AMH-
Gen II ELISA assay kit (Beckman Coulter) was used. The lowest detection limit of AMH is 
0.08 ng/mL and the intra and interassay coefficients of variation below 3.4% and 4.0% 



respectively. The ECLIA method used to measure the levels of serum FSH and E2 by 
COBAS e411 auto-analyser (Roche Diagnostics). The lowest detection limit for FSH is 0.100 
IU/L, with the intra- and interassay coefficients of variation below 2.6% and 3.5% 
respectively. The lowest detection limit for E2 is 18.4 pmol/L, with the intra- and interassay 
coefficients of variation of 2% and 3%, respectively. 

Giving the poor reliability of the FSH value in presence of Estradiol levels greater than 70 
pg/mL, women with basal E2 levels greater than this cut off were asked to come back at the 
beginning of the subsequent menstrual cycle, and their data were excluded from the analysis. 

Ultrasonographic data collection and post-processing 

The same day of hormonal assay, a single experienced investigator (DL) performed all the 
ultrasound scans using a Voluson-i (GE Healthcare Ultrasound) and a 5–9-MHz transvaginal 
volume transducer, which has 3D ultrasound scanning modes. Antral follicle number and 
vascularization indices were measured using a 3D ultrasound dataset, with Sonography-based 
Automated Volume Count and Virtual Organ Computer Aided Analysis Imaging Program 
(SonoAVCTM and VOCALTM, GE Healthcare Ultrasound, Zipf, Austria), as previously 
described by other authors [8] . 

The acquired 3D ultrasound datasets were displayed in the multiplanar view. The image were 
optimized to generate a three-dimensional volume of interest (VOI) and to ensure that the 
whole ovary was included without extra-ovarian information. 

SonoAVC was applied for automatically identifying and quantifying hypoechoic areas within 
a 3D ultrasound dataset. Post-processing, involving the manual identification of follicles not 
included in the previous automated analysis, was then used to ensure that all antral follicles 
were counted. The total antral follicle count for each subject was recorded to the nearest 
millimeter, starting from 2.0 mm up to a maximum of 10.0 mm.Patients with ovarian follicles 
greater than 10 mm were asked to come back at the beginning of the subsequent menstrual 
cycle. 

The ultrasound machine was switched to the 3D mode with power Doppler. The setting 
condition for this study was as follows: frequency mid; dynamic set 2; balance G >140; 
smooth 5/5; ensemble 12; line density 7; power Doppler map 5, sweep angle 30°. The setting 
condition for the sub-power Doppler mode was as follows: gain 6.0; balance 140; quality 
normal; wall motion filter low 1; velocity range 0.9 kHz. A 3D dataset was then acquired 
using the medium speed sweep mode. The built-in VOCAL (virtual organ computer aided 
analysis) Imaging Program for the 3D power Doppler histogram analysis was used to 
determine the ovarian volume and indices of vascularization and blood flow. Vascularization 
index (VI) measured the number of blood vessels in the ovary (colour voxels) and was 
expressed as a percentage (%) of the ovarian volume. Flow index (FI) represented the 
average intensity of flow inside the ovary and Vascularization flow index (VFI), made by 
multiplying VI and FI, was a combination of vascularization and flow. During the analysis 
and calculation, the manual mode of the VOCAL Contour Editor was used to cover the whole 
3D volume of the ovary with a 15° rotation step. Hence, 12 contour planes were analyzed for 
each ovary to cover 180°. 

The intra-observer reliability was expressed as the mean intra-class correlation coefficient 
(ICC) with 95% confidence interval (CI). The mean ICC (95% CI) for 3D scanning of 



ovarian volume, VI, FI and VFI were 0.9709 (0.8692, 0.9837), 0.9796 (0.9659, 0.9876), 
0.8876 (0.7143, 0.9723) and 0.9934 (0.9761, 0.9987) respectively. The mean ICC for data 
acquisition of ovarian volume, VI, FI and VFI were 0.9945 (0.9745, 0.9923), 0.9845 (0.9432, 
0.9954), 0.9878 (0.9621, 0.9954) and 0.9865 (0.9523, 0.9967) respectively. 

Statistical analysis 

A dataset of 710 records of subjects has been analyzed using Konstanz Information Miner 
(KNIME) v.2.9.2 and KNIME R Statistics Integration v.2.9.1 for integrating R language 
v.3.0.3. 

The whole analysis consists in six main steps: (i) definition and creation of three datasets, 
Healthy Controls, POIs and PCOS; (ii) descriptive statistics and statistical analysis of datasets 
and construction of growth curves centile by the LMS method [9]; (iii) generation of 
Generalized Linear Models (GzLMs); (iv) choice of best model by stepwise selection, 
according to the Aikake Information Criterion (AIC) [10]; (v) reconstruction and refinement 
of the best GzLM model; (vi) evaluation and testing of the final model; (vii) application of 
the model on POI and PCOS datasets. 

For details of statistical methods, see the Additional file 1. 

Results 
From January 2012 to March 2014, 840 women were screened for the enrollment. According 
to exclusion and inclusion criteria, 96 patients were not considered eligible and other 34 
refused to participate, hence a total of 710 women were enrolled and analyzed. 

Table 1 summarizes the statistics of healthy controls (HC, 652 subjects), POIs (29 subjects) 
and PCOS (29 subjects) respectively, for age, parity, AMH, FSH, E2, AFC, FI, VI, VFI and 
Volume. Spearman’s test coefficients showed statistical dependences between Age and AMH 
(−0.8090), FSH (0.6742), E2 (−0.2289), AFC (−0.7304), FI (−0.5649), VI (−0.4066), VFI 
(−0.3428) and Volume (−0.5519). Holm’s method corroborated this correlation, providing 
significant adjusted p-values (p < 0.0001) for each dependent variable. In Figure 1 the centile 
curves are depicted for each feature. 

Table 1 Descriptive statistics for healthy control subjects (652 subjects), POI affected 
subjects (29 subjects) and PCOS affected subjects (29 subjects) 
 Healthy controls 

(652 subjects)
POI subjects 
(29 subjects)

PCOS subjects 
(29 subjects) 

Age [years] 36.80 ± 8.62 37.90 ± 3.31 27.45 ± 4.30 
Parity [number] 1.37 ± 0.97 0.44 ± 0.57 1.21 ± 0.67 
AMH [ng/ml] 1.74 ± 1.75 0.01 ± 0.04 7.19 ± 2.13 
FSH [mlU/ml] 12.47 ± 11.94 59.37 ± 23.52 6.45 ± 1.44 
E2 [pg/ml] 40.76 ± 18.56 26.24 ± 17.02 49.90 ± 15.53 
AFC 10.97 ± 6.71 3.24 ± 2.23 28.90 ± 6.51 
FI 32.16 ± 9.46 22.38 ± 6.94 38.14 ± 6.35 
VI 1.91 ± 2.68 1.46 ± 2.97 1.81 ± 0.98 
VFI 1.11 ± 1.70 0.63 ± 0.85 1.26 ± 0.70 
Volume 5.66 ± 2.25 3.72 ± 1.76 7.72 ± 1.98 
Data are expressed as mean ± SD. 



Figure 1 Plots of growth curve centile (3th, 10th, 25th, 50th, 75th, 90th, 97th) for each 
feature where Age is the covariate. The LMS method and penalized likelihood is used for 
fitting distributions. 

Table 2 presents a summary of the ten models according to the predictors chosen for the 
equation and reports AIC, the testing errors evaluated through the leave-one-out (LOO) and 
cross-validation technique. 

Table 2 Comparison of Generalized Linear Models in term of AIC as the predictors 
change 
Model Predictor AIC
GzLM#1 AMH + FSH + E2 + AFC + FI + VI + VFI + Volume 3987.3 
GzLM#2 AMH + FSH + AFC + FI + VI 3981.9 
GzLM#2* AMH + FSH + AFC + FI + VI + AMH*AFC + FSH*AFC 3955.2 
GzLM#3 AMH 4175.5 
GzLM#4 AMH + FSH 4052.1 
GzLM#5 AMH + FSH + E2 4053.8 
GzLM#6 AMH + FSH + AFC 4003.4 
GzLM#7 FI + VI + VFI + Volume 4449.9
GzLM#8 AFC 4215.6 
GzLM#9 AFC + Volume 4190 
GzLM#10 Volume 4651.7 

In the first model, GzLM#1, only E2, VFI and Volume had shown p-values greater than 0.01. 
These three variables were then removed and a second model, GzLM#2, was created. In 
GzLM#2, all the five variables showed a p-value < 0.001, that together with the lowest AIC 
(and the highest leave-one-out and 10-fold cross-validation accuracy) leaded to accept this set 
of attributes as the best one. 

The model GzLM#2* contains two more terms, AMH:AFC (p-value < 0.001) and FSH:AFC 
(p-value < 0.001). GzLM#2* showed a lower AIC value (3955.2) compared to the previous 
models. ANOVA test was performed for comparing model GzLM#2* to the null model: a p-
value < 0.001 for AMH, FSH, AFC, FI, AHM:AFC, FSH:AFC and a p-value < 0.01 for VI, 
successfully confirmed the prediction power of the variables. 

The goodness of fitness of the model GzLM#2* was first evaluated by a Chi-squared test 
obtaining a p-value of 1, which was large enough to indicate no evidence of a lack of fit. 

In the upper part of the Figure 2a, diagnostic plots for model GzLM#2* are depicted. In the 
plot on the left, Pearson residuals were plotted against predicted values. The red line almost 
coincides with the horizontal one proving that the constant variance assumption on the errors 
is verified and thus that the model shows a high level of fit. 

Figure 2 Diagnostic plots for (a) model GzLM#2* and (b) model GzLM#2**. On the left 
Pearson residuals plotted against predicted values and on the right the Normal Q-Q plot. The 
red line in the plot of residuals of GzLM#2** presents a slight improvement in the linear 
trend compared to the plot of model GzLM#2*. 



The Normal Q-Q plot on the right of the upper part of Figure 2a shows that dots follow a 
linear trend even if several cases at the ends influence the normality. For this reason, the 
model, now called GzLM#2**, has been updated without influence cases. Seven cases in 
total have been removed from the final dataset and then analyzed by specialists in order to 
search for possible abnormalities. Such further investigation showed that those patients were 
not affected by any pathology and the only reason for excluding them is related to their high 
Cook’s distance, that is the measure of influence on the regression coefficients. 

The bottom part of the Figure 2b depicts diagnostic plots for the new GzLM#2** model. The 
Normal Q-Q plot still shows several cases diverge from linearity but their distances are 
acceptable, compared to the Normal Q-Q plot of GzLM#2*. The red line in the plot of 
residuals against the fitted values of GzLM#2** (on the left), presents a slight improvement 
in the linear trend compared to the plot of model GzLM#2*. 

The LOO and ten-fold cross-validation accuracy for GzLM#2** are respectively 79.865% 
and 79.832%, with an improvement of about 3% of accuracy compared to the previous 
models. 

For these reasons, we can certainly assess that in our dataset of 645 healthy controls, the best 
equation for predicting the ovarian age is: OvAge = 48.05-3.14*AHM + 0.07*FSH-
0.77*AFC-0.11*FI + 0.25*VI + 0.1*AMH*AFC + 0.02*FSH*AFC. 

GzLM#2** has been applied on POI and PCOS datasets to test its power of discovering 
significant deviation from normality. The ovarian age of each POI subject resulted to be, as 
expected, significantly higher than the chronological age. The mean of their OvAge is indeed 
50.63 ± 3.80 years, against a mean of chronological age of 37.90 ± 3.31 years. 

Regarding PCOS subjects, the mean OvAge (24.98 ± 0.91 years) of 24 PCOS subjects 
resulted to be significantly lower than the chronological age (29 ± 2.75 years). 

Discussion 
In this prospective study, we collected data of clinical, biochemical and 3D-ultrasonographic 
parameters in a population of healthy fertile women with the aim of developing a new 
methodology to quantify ovarian age (OvAge). To introduce this new variable, expression of 
ovarian reserve, we assumed that in healthy women with proven fertility ovarian age 
corresponds to chronological age. 

In women enrolled as healthy fertile controls, our new model showed a high level of fit 
between chronological age and predicted OvAge. In POIs and PCOS patients, conversely, a 
significant difference between these two parameters was shown, indicating that the formula 
produced is able to recognize pathological deviation from normal ovarian function. 

Moreover, in all 18 women with a predicted ovarian age between 49 and 51 years at 
enrollment, regardless of their chronological age, menopause occurred within 1–2 years 
during the study period (data not shown). 

Although preliminary, these results are very promising and drive us to further investigations 
and to a follow-up clinical validation of our model. The prospective evaluation of distance to 



menopause in our population, for example, is ongoing, and our statisticians are working to 
reach quickly the highest possible predictive ability, by means of accelerated failure time 
modeling. This approach was recently used by Tehrani et al. [11], but their analysis was 
conducted by measuring AMH, collected on any days of the menstrual cycles, and they did 
not use other markers of ovarian ageing [11]. The evaluation of our 18 cases in which OvAge 
was more reliable than chronological age in determining the time to menopause, however, is 
already a first clinical confirmation of its reliability. 

With OvAge, we aim to answer the need of any modern gynecologist to find the ideal marker 
of ovarian function. It should be universally accepted, reproducible, easy to interpret and 
applicable to the general population, and has to be able to give reliable information on 
number and quality of follicles, residual fertility, time to menopause and reproductive 
prognosis, both natural and post-Assisted Reproductive Techniques (ART). 

Basal serum FSH, extensively studied over the past few decades, only provides a crude 
surrogate marker of biological ovarian age when paired with the chronological age but it is 
probably the most indirect marker of ovarian reserve to date [12]. Moreover, FSH variability 
between follicular phases has been reported to be above 50% of the measured value, thus 
inevitably reducing the global predictive performance of this marker [13]. 

Recent studies have suggested that serum AMH levels represent ovarian quantitative reserve 
in IVF patients and may provide an index of age at menopause [11,14,15]. Thanks to its 
ability of providing valuable information regardless of what day in the cycle the sample is 
drawn and in women who do not menstruate, AMH has gained popularity among infertility 
specialists. In a recent retrospective study on women undergoing their first IVF/ICSI cycle, 
however, concordance between AMH and FSH was noted in 57% of women while 43% of 
women had discordant values. According to these results, authors concluded that both AMH 
and FSH tests are probably useful to predict ovarian response but since many women have 
discordant values, it is difficult to counsel patients regarding their true ovarian reserve using 
one single marker [16]. 

In a recent meta-analysis, authors showed that even if AMH, independently of age, has some 
association with predicting live birth after assisted conception, its predictive accuracy is poor, 
concluding that no patient should be precluded from attempting ART solely on the basis of an 
AMH value [17]. Moreover, only very limited data on AMH and natural fertility at different 
stages of reproductive life are available today, since AMH levels have been extensively 
studied in infertile women but less in fertile ones. 

With the recent acquisition of one of the two commercially available assays in commerce by 
Beckman-Coulter, the two existing kit were replaced by a new enzyme-linked 
immunosorbent assay. Recent safety notices, indicating the risk of falsely low and falsely 
elevated values due to technical mistakes, have fueled concerns about the robustness of the 
new assay [18]. This issue, once again, limits the actual possibility of considering AMH as 
the best single marker, sufficient by itself, for ovarian reserve assessment. 

Studies on ultrasonographic parameters and ovarian reserve prediction reported similar 
conclusions. While AFC provides a direct estimation of recruitable follicles and gradually 
declines with chronological age, less data are today available on ovarian flow indexes [19]. 



According to the results of his meta-analysis, Gibreel in 2009 concluded that although 
Doppler studies of ovarian stromal blood flow are promising, more studies are warranted, 
also to determine the optimum parameters and the best cut-off values for these indices [20]. It 
is known, however, that three-dimensional Doppler technique yields better axial resolution, 
fewer blooming artifacts, and improved sensitivity to slow flows and small vessels compared 
with standard bi-dimensional power Doppler [21]. This advantage makes 3D angiography 
attractive since one speculative cause of age-related increase in oocyte chromosomal meiotic 
errors is a reduced oxygen levels in the follicular fluid caused by a compromised 
microcirculation around the leading follicle [22]. 

All these observations confirm the need of assessing ovarian age through dynamic 
multimodal tools able to improve the limited accuracy of the single parameter evaluated 
individually. 

To the best of our knowledge, this is the first attempt to create a multimodal methodology 
able to answer with an easy-to-interpret response, the exact ovarian age or OvAge. 

The developed equation combines complementary evaluations and gives as a result explicitly 
the ovarian age, a ready-to-use information, which will be useful for both women and 
physicians. In future, if it will be validated by our ongoing prospective evaluation, OvAge 
could provide reliable information to gynecologists for counseling patients in their 
reproductive attempts and for reducing the rates of unnecessary surgery in the management of 
benign pathologies, such as dysfunctional abnormal uterine bleeding, adenomyosis or 
fibromatous uterus, which may best be treated with medical therapy, if natural menopause 
will be predicted to occur within few years. 

OvAge could help researchers in quantifying the effect of surgeries, medications and ovarian 
pathologies themselves on women’s ovarian in term of years of ageing, with the advantage of 
an intuitive, easily communicable and universal information available to both physicians and 
patients. 

Conclusions 
In conclusion, to the best of our knowledge, this is the first attempt to build a mathematical 
formula in which, once single patient’s biochemical and ultrasonographic values are 
introduced as input, the generated output is an easy-to-interpret number, which reliably 
expresses the ovarian reserve of that woman. This formula and its output, both called OvAge, 
put together different markers with different meanings to increase the reliability of the new 
ovarian reserve parameter. 
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